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A dislocation model for the nonclassical rotational inertia is proposed. Temperature dependence of the period
of the torsional oscillator containing solid helium is derived from the variation in the average pinning length of
dislocations in solid helium. The mechanism is that the vibration of dislocations causes the wave number of the
shear wave in solid helium to increase. Consequently the apparent moment of inertia of solid helium is
increased with increasing temperature.
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I. INTRODUCTION

Since the first observation of nonclassical rotational iner-
tia �NCRI� of solid helium,1,2 several groups have confirmed
the existence of the effect.3–6 However, the origin of NCRI is
not clear yet.7 The decrease in the period of the torsional
oscillator �TO� at low temperatures seemed to indicate that a
part of the mass of solid helium was decoupled from the
torsional oscillation. The concept of supersolid was proposed
as a possible mechanism for NCRI and the NCRI fraction
�NCRIF� was obtained. The NCRIF was decreased when the
rim velocity was above about 10 �m /s, which was inter-
preted to be the supersolid critical velocity. The size of
NCRIF varied in a wide range from 0.03% to 20% but its
onset temperature was rather reproducible as far as commer-
cially available pure 4He gas containing about 300 ppb 3He
was used. NCRI was observed both in cylindrical and annu-
lus TOs. The highest NCRIF of 20% was reported for rapidly
cooled solid helium in an annulus TO.8 The decrease in
NCRIF by annealing,3 the increase in the onset temperature
with the 3He concentration,9 and the hysteresis with respect
to the rim velocity4 and to the temperature10 indicate that the
observed NCRI is not an intrinsic property of solid helium,
but an effect of defects such as dislocations, grain bound-
aries, and 3He impurities in solid 4He.

Most of the 4He crystals studied in the TO experiments
were grown with the blocked capillary method.9 They were
probably polycrystalline and contained both grain boundaries
and dislocations. However, Clark et al.11 have grown high-
quality crystals in their TO with the open capillary method
and still observed NCRI in all the samples. They have ex-
cluded the grain-boundary model12 and suggested disloca-
tions as possible defects responsible for NCRI.

The existence of dislocations in solid helium was first
pointed out in the plastic deformation experiments.13,14 Then
ultrasonic studies revealed the unique properties of the dis-
locations in hcp 4He crystals.15,16 Namely, the basal disloca-
tions whose slip plane was the basal plane of the hexagonal
crystal could oscillate resonantly with the sound wave in the
megahertz region at temperatures below 1 K, thereby induc-
ing the sound velocity change and sound attenuation. The
same phenomena were also observed in hcp 3He crystals.17

On the other hand, the ultrasonic properties of the disloca-
tions in bcc 3He crystals17,18 were found to be very different
from those in hcp 4He and hcp 3He crystals as a result of the
Peierls potential.

Day and Beamish19 have found that the shear modulus �
of hcp 4He at low frequencies was increased by about 10%
as the temperature was lowered from 200 to 18 mK. They
explained the variation in � in terms of dislocations pinned
by 3He atoms. There were several similarities between � and
TO measurements. However, it was believed7,19 that an in-
crease in � would intensify the coupling of solid helium to
the TO and increase its period. The observed period was
decreased at low temperatures instead. In the following we
will seek a theoretical relationship between the dislocation
motion in solid helium and the period of TO.

II. MODEL

A. Torsional oscillator

The rotational equation of motion for a TO containing
solid helium is given by

ITO
d2�

dt2 = − �� + � , �1�

where ITO is the moment of inertia of the TO, � is the tor-
sional angle, � is the torsional spring constant, and � is the
torque exerted by solid helium on the wall of the TO. We
employ a cylindrical coordinate system �r ,� ,z� with the z
axis coinciding with the axis of the cylinder and assume the
displacement occurs only in the � direction, namely, u�

=u��r , t�. As the surface of solid helium moves together with
the TO, the boundary condition at the cylindrical wall is

u��R,t� = u0e−i�t, �2�

where u0 is the amplitude of the rim displacement of the TO
and � is the angular frequency. We note that �=u��R , t� /R.

The oscillation of the TO induces periodical stress, 	�r�,
in solid helium. As a reaction solid helium exerts a force on
the wall of the TO. We consider a cylindrical TO with radius
R and height H and assume for simplicity that the cylinder is
sufficiently long so that the effect of the top and bottom
plates can be neglected. Then the torque is obtained to be

� = − 2
R2H	�R� . �3�

The assumption above may not be good for actual cylindrical
geometry but good enough for annulus geometry.

Using the theory of elasticity,20 the displacement is ob-
tained analytically as
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u��r,t� = u0
J1�krr�
J1�krR�

e−i�t, �4�

where J1 denotes Bessel’s function of order 1 and kr is the
wave number for shear wave in the radial direction which
satisfies the dispersion relation

�kr
2 = ��2. �5�

� and � are the shear modulus and the density of solid he-
lium, respectively. The shear stress, 	r�, can be calculated
from the displacement to be

	r� = − �u0kr
J2�krr�
J1�krR�

e−i�t, �6�

where J2 denotes Bessel’s function of order 2. krR is smaller
than unity for a typical TO �u0=1 nm, kr=0.02 mm−1, R
=4 mm, and � /2
=1000 Hz�, so that J1 and J2 can be
expanded in power series of krr.

In the first-order approximation the stress becomes

	r� = −
�kr

2r2

4
� = −

��2r2

4
� . �7�

By using the moment of inertia of solid helium IHe

= 

2 R4H�, the torque becomes

� = IHe�
2� . �8�

Then Eq. �1� becomes equivalent to the torsional equation of
motion with a total moment of inertia ITO+ IHe and the period
is independent of the shear modulus;

p =
2


�
= 2
�ITO + IHe

�
. �9�

The second-order approximation has been derived by Clark
et al.;10

p = 2

�ITO + IHe�1 +

��2R2

24�
�

�
. �10�

As the temperature is lowered, � is increased19 and then p is
decreased according to Eq. �10�. This is qualitatively in ac-
cordance with experimental results, but quantitatively, the
change in p is too small.

B. Effect of dislocations

The effect of dislocations on the period of the TO is ana-
lyzed in the following. A dislocation is a linear lattice defect
which is characterized by the direction vector l and Burgers
vector b. Dislocation lines form a three-dimensional network
as shown in Fig. 1�a�. Dislocation lines terminate at the in-
terface wall with the termination being a strong pinning
point. Dislocation lines are also strongly pinned at the nodes
of the network. These strong pinning points are characterized
by their nonconservative motion.21 LN is the average network
pinning length, which is assumed to be constant throughout a
series of experiment except for the case when the sample is
annealed. A typical value of LN is a few micrometer from the

ultrasonic measurements.16 Dislocation lines are weakly
pinned by 3He impurity atoms. Li is the average impurity
pinning length, which depends on the temperature T and the
bulk 3He concentration x3,

Li = gx3
−2/3e−2W0/3T, �11�

where g=3.4�10−9 m is a constant and W0=0.3 K is the
binding energy.22 The factor −2 /3 arises from the condition
that Li is proportional to c−2/3, where

c = x3eW0/T �12�

is the local concentration of 3He near the dislocation line.
The average length of dislocation segments L approaches LN
at high temperatures and Li at low temperatures. The transi-
tion temperature from LN to Li depends on x3. As the number
of impurity pinning points is 
 /Li and that of network pin-
ning points is 
 /LN, an interpolation of LN and Li is given by

L =






Li
+




LN

=
LNLi

LN + Li
. �13�

LN, Li, and L at different x3 are shown in Fig. 2�a�.
The glide plane of a dislocation is defined as a lattice

plane containing both l and b. We introduce a local coordi-
nate system the origin of which is a point on the cylindrical
wall of the TO as depicted in Fig. 1�b�. x is the direction
from the cylindrical wall to the rotational axis of the TO, y is
parallel to the rotational axis and z is the tangential direction
of the cylinder. As the TO oscillates, a shear wave propagat-
ing in x direction is excited in solid helium which causes
displacement in z direction. The shear stress in solid helium
excited by the torsional oscillation is given by

	�x,t� = 	0ei�k�x−�t�, �14�

where k� is the wave number of the shear wave under the
existence of dislocations. Two types of dislocations whose
glide plane is the yz plane can interact with the shear stress
Eq. �14�: one is the screw dislocation with b � z and l � z, the
other is the edge dislocation with b � z and l � y as shown in
Fig. 1�b�. When the shear stress is applied, the screw dislo-
cation moves in y direction and the edge dislocation moves
in z direction. Ultrasonic experiments indicate that movable
dislocations in hcp 4He are basal edge dislocations. Hence

��

��

�

�

�

�

�

	
� 	��

FIG. 1. �Color online� �a� Schematic dislocation network in
solid helium. LN: network pinning length, Li: impurity pinning
length. �b� Local coordinate system with two dislocations which
glide on yz plane. s: screw dislocation, e: edge dislocation. The
small arrows indicate the direction of dislocation motion.
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we assume the dislocations to be the edge dislocation b � z,
l � y in the following.

According to Granato and Lücke,24 the strain of a crystal
containing dislocations is a sum of the elastic part and the
dislocation part,

� = �el + �dis. �15�

The elastic part is related to the stress as

�el =
	

�el
, �16�

where �el is the elastic shear modulus without the effect of
dislocations. The resonance frequency of a dislocation seg-
ment of length L is given by

�0 =
1

L
� 2�el

�1 − ���
, �17�

where � is Poisson’s ratio. A typical value is �0 /2

=16 MHz for L=5 �m. Assuming ���0 and that the
damping constant for dislocation motion B=B0T3 is negli-
gible at T�1 K, we obtain the dislocation part of the strain
to be

�dis =
�
	


��0
2 , �18�

where � is an orientation factor depending on the polariza-
tion of the elastic wave and the crystal orientation, and 
 is
the dislocation density. A typical value of �
 is
108–109 m−2 in the longitudinal ultrasonic measurements.16

The equation of motion of solid helium containing disloca-
tions is given by

�
�2�

�t2 =
�2	

�x2 . �19�

From Eqs. �14�–�19� we are led to

�elk�2 = ��2�1 +
�el�



��0
2 � . �20�

This is the dispersion relation of solid helium with disloca-
tions which should be used instead of Eq. �5�.

Corresponding to Eq. �15� the displacement consists of
the elastic part and the dislocation part,

u = uel + udis. �21�

Because the dislocations are pinned at the interface wall, the
dislocation part of the displacement is negligible at the
boundary. Hence the boundary condition of the TO is given
by

uel�R,t� = u0e−i�t. �22�

The elastic displacement and the stress in the solid helium
become

uel�r,t� = u0
J1�k�r�
J1�k�R�

e−i�t �23�

and

	�r� = −
�elk�2r2

4
� = −

��2r2

4
�1 +

�el�



��0
2 �� , �24�

instead of Eqs. �4� and �7�, respectively. Then the torque is
given by

� = IHe�
2�1 +

�el�



��0
2 �� , �25�

and finally we obtain the period to be

p = 2

�ITO + IHe�1 +

�el�



��0
2 �

�
. �26�

In the case of an annulus TO, the derivation is more tedious
but the final results are the same as Eqs. �25� and �26� with a
replacement for the moment of inertia

IHe =



2
�R0

2 + R1
2��R0

2 − R1
2�H� , �27�

where R0 and R1 are the outer and inner radius of the annu-
lus, respectively.

III. ANALYSIS

To compare with experiments Eq. �26� is rewritten to

p = p0 + p1 + p2, �28�

where p0=2
�ITO /� is the period of the empty TO, p1
= �IHe /2ITO�p0 is the change in the period due to loading with
solid helium, and p2 is the dislocation contribution to the
period change,

(a)

(b)

FIG. 2. �Color online� �a� Temperature dependences of LN, Li,
and L with LN=2.0�10−6 m. �b� Temperature dependences of
p2 / p1 at x3=1 ppb, 300 ppb, and 30 ppm calculated from Eqs. �13�
and �29�, with �
=1.78�1010 m−2, LN=2.0�10−6 m, �=0.3,
and the experimental data of NCRI �Ref. 23� converted to p2 / p1.
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p2 =
�el�



��0
2 p1 =

�
L2�1 − ��
2


p1. �29�

Figure 2�b� shows the temperature dependences of p2 / p1 at
x3=1 ppb, 300 ppb and 30 ppm calculated from Eq. �29� and
an experimental data of NCRI �Ref. 23� at x3=300 ppb con-
verted to p2 / p1. Parameters for Li are taken from the ultra-
sonic measurements. Fit parameters are LN=2.0�10−6 m
and �
=1.78�1010 m−2, which are consistent with the ul-
trasonic dislocation parameters.

In the present model the TO period representing the in-
trinsic moment of inertia of solid helium is p0+ p1 measured
at low temperatures, where 3He atoms completely pin the
dislocations. As the temperature increases the average pin-
ning length L becomes longer and the dislocation contribu-
tion p2 is increased. The effect of dislocation vibration is to
increase the wave number of the shear wave. As a result, the
stress amplitude in solid helium induced by the torsional
oscillation is increased, which in turn increases the torque on
the TO, and consequently the period of the TO is increased.
In other words the apparent moment of inertia of solid he-
lium is increased.

IV. DISCUSSION

Day and Beamish19 measured the strain and stress to de-
rive the shear modulus. The strain they measured is the total
strain appearing in the left-hand side of Eq. �15�. Therefore
what they have obtained is the macroscopic shear modulus

�m =
	

�
=

	

�el + �dis
. �30�

Using Eqs. �16�–�18�, we obtain

�m =
�el

1 +
�el�



��0
2

� �el�1 −
�
L2�1 − ��

2

	 . �31�

Equation �31� describes that the temperature dependence of
the macroscopic shear modulus is also caused by the tem-
perature dependence of L as Day and Beamish explained.

3He atoms are weak pinning points. The force on a pin-
ning point is approximately given by f =Lia	. When f ex-
ceeds a critical value fc, the dislocation breaks away from the
pinning point. As the stress amplitude increases, more dislo-
cation segments break away from 3He atoms and L becomes
longer. As a result, the period of TO is increased. Therefore
the observed amplitude dependence of the period is a conse-
quence of the amplitude dependence of the pinning length.

Likewise the observed hysteresis of the period is a conse-
quence of the hysteresis of the pinning length. At low stress
level and at low T, the average pinning length L is equal to
Li. As the stress �or T� is increased L stays equal to Li until
the stress amplitude reaches a critical value. At higher stress
level �or higher T� dislocations break away from 3He atoms
and L becomes longer. When the stress �or T� is decreased L
remains long because the dislocations are oscillating. Mov-
ing dislocations are not readily pinned because it takes time
for 3He atoms to arrive at a dislocation line.22 This hysteresis

of L leads to the hysteresis of the period of TO.
It has been theoretically predicted that the core of a per-

fect screw dislocation parallel to the c axis becomes
superfluid.25 However, the screw dislocation has a large Bur-
gers vector b=�8 /3a so that it tends to relax to configura-
tions with lower energy26 because the dislocation energy per
unit length is approximately proportional to b2. Hence the
number of perfect screw dislocations must be much smaller
than that of other dislocations. It is unlikely that a network of
perfect screw dislocations exists in solid helium, which sup-
ports superflow throughout the sample. On the other hand,
dislocations in hcp 4He with the smallest Burgers vector are
partial dislocations in the basal plane with b=�1 /3a. They
are calculated to be insulating.27

One of the experimental results which is considered to be
an evidence for the supersolid model is the disappearance of
NCRI in the cells with blocked annulus.2,28 However, the
present dislocation model can explain the disappearance as a
difference of stress fields in blocked and unblocked annulus
cells. In an unblocked cell, there exists only a circular shear
stress field 	r�. The barrier in a blocked cell, on the other
hand, generates a compressive stress field 	�� in solid helium
which causes two effects. Firstly, 	�� removes a part of the
torque in Eq. �1� from 	r�. Secondly, 	�� suppresses the am-
plitude of dislocation vibration severely. Consequently, p2
becomes smaller. A TO experiment with a partially blocked
annulus, i.e., the upper half blocked at one place and the
lower half blocked at another place, would distinguish be-
tween the supersolid and dislocation mechanisms. The partial
barriers cannot stop superflow but they can suppress the dis-
location vibration as much as a perfect barrier.

The TO period change is always accompanied by a dissi-
pation peak. In the present dislocation model, the dissipation
is ascribed to damping of the dislocation vibration in solid
helium and given by24

Q−1 = 2�a
�d

��0
2 − �2�2 + �2d2 , �32�

where �a= �8�
�� / �
2�� is a constant independent of tem-
perature and d is the temperature-dependent damping con-
stant for dislocation motion. Note that �0 depends on tem-
perature from Eqs. �11�, �13�, and �17�,

�0 = � x3
2/3e2W0/3T

g
+

1

LN
�� 2�el

�1 − ���
. �33�

The contribution of thermal phonons to d is negligible at
temperatures below 1 K.16 The origin of dislocation damping
is the interaction of dislocation motion with the atmosphere
of 3He atoms formed around the dislocation line, whose con-
centration is given by Eq. �12�. If we assume the damping
constant to be proportional to c2/3 similar to 1 /Li, then Eq.
�32� can be fitted to the experimental dissipation peak as
shown in Fig. 3. The damping constant is determined to be

d = 2.58 � 108e0.2/T s−1. �34�

Relaxation models of glass,29 superglass,30 and
viscoelasticity31 can account for the dissipation peak to some
extent. The advantage of these models is that they can de-
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scribe the dissipation peak and the change in TO period si-
multaneously. Quantitative fitting of the dissipation and pe-
riod with a single relaxation time, however, is not
satisfactory.29–31 The present dislocation model differs from
those relaxation models in that not only the relaxation time,
which is given by d /�N

2 , but also the frequency of the vibra-
tional modes, �0, depends on temperature. Here �N is the
resonance frequency corresponding to LN.

The present model is based on the unique property of
solid helium that basal dislocations in the hcp 4He crystal are
movable on the basal plane. The crystal structure is crucial
while the quantum statistics of atoms is not important. Hence

one expects similar NCRI and similar change in � to occur
in hcp 3He while no such phenomena in bcc 3He. Recently
West et al.32 have measured the period of a TO and the shear
modulus in 3He crystals with bcc and hcp structures. In the
case of bcc 3He, no drop in the TO period and no increase in
� were observed in agreement with the present model. In the
case of hcp 3He, an increase in � was observed in agreement
with the model, but no drop in the TO period was observed.
The final observation is inconsistent with the present model
except for a special case that the orientation factor is null.
Such a case is possible when the c axis of the helium crystal
is parallel to the rotational axis. As the NCRI data presented
in the Ref. 32 is limited to only one sample for hcp 3He,
more study is desirable especially at higher pressures.

V. CONCLUSION

In conclusion, the so-called nonclassical rotational inertia
is caused by the variation in the average pinning length of
dislocations in solid helium. The period change in TO and
the variation in the shear modulus are explained in the same
framework.
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